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Abstract: Receptor flexibility must be incorporated into structure-based drug design in order to portray a
more accurate representation of a protein in solution. Our approach is to generate pharmacophore models
based on multiple conformations of a protein and is very similar to solvent mapping of hot spots. Previously,
we had success using computer-generated conformations of apo human immunodeficiency virus-1 protease
(HIV-1p). Here, we examine the use of an NMR ensemble versus a collection of crystal structures, and we
compare back to our previous study based on computer-generated conformations. To our knowledge, this
is the first direct comparison of an NMR ensemble and a collection of crystal structures to incorporate
protein flexibility in structure-based drug design. To provide an accurate comparison between the
experimental sources, we used bound structures for our multiple protein structure (MPS) pharmacophore
models. The models from an NMR ensemble and a collection of crystal structures were both able to
discriminate known HIV-1p inhibitors from decoy molecules and displayed superior performance over models
created from single conformations of the protein. Although the active-site conformations were already
predefined by bound ligands, the use of MPS allows us to overcome the cross-docking problem and generate
a model that does not simply reproduce the chemical characteristics of a specific ligand class. We show
that there is more structural variation between 28 structures in an NMR ensemble than 90 crystal structures
bound to a variety of ligands. MPS models from both sources performed well, but the model determined
using the NMR ensemble appeared to be the most general yet accurate representation of the active site.
This work encourages the use of NMR models in structure-based design.

Introduction

Structure-based drug design (SBDD) has emerged as a very
important tool in drug discovery research.1,2 Advances in
computational power have increased the practicality of using
molecular modeling techniques in the drug development process,
although the tradeoff between speed and accuracy still exists.
Accounting for the conformational changes that can occur within
the binding site of proteins has increased the difficulty of SBDD.
The protein in solution exists as an ensemble of energetically
accessible conformations and is best described when all states
are represented.3-5 Upon ligand binding, further conformational
changes in the receptor can be induced. Although ligand
flexibility can be accurately reproduced, replicating the in-
numerable degrees of freedom of a protein is impractical.

Much progress has been made in developing clever, compu-
tationally feasible methods that simulate the inherent flexibility
of a ligand-receptor system using both experimentally and
theoretically determined structures. Several reviews have been

published in this area of research.6-9 In general, there are four
techniques that are most often employed. The original method
is termed “soft docking” and involves relaxing the criterion used
to model steric fit, allowing for overlap of the protein and ligand
surfaces.10,11 A second method utilizes a single representative
structure, the average of a collection of conformational states.12,13

A third way is to generate receptor conformations “on the fly”
such that side chains are allowed to move to accommodate
ligand binding using a predetermined rotamer library to define
acceptable, alternative conformations.14,15 A final approach is
to use an ensemble of protein structures.13,16-19 Models can be
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generated by overlaying the different conformations in the
ensemble, or each structure can be considered separately.

Previously, Carlson et al. developed a robust receptor-based
pharmacophore method based on an ensemble of unbound
protein structures to account for the inherent flexibility of HIV-1
integrase.16 The multiple protein structure (MPS) method was
then extended to develop pharmacophore models from three
unbound structures of human immunodeficiency virus-1 protease
(HIV-1p).20,21 In both studies, molecular dynamics (MD)
simulations were used to generate the multiple conformations.
The MPS pharmacophore models outperformed those generated
from static models and were successful at predicting known
inhibitors from druglike noninhibitors. It is of particular interest
that the models created using the unbound HIV-1p were able
to identify ligand conformations found in cocrystal structures.20

A difficulty that arises when working with multiple structures
is deciding which receptor conformations are the most appropri-
ate to use. A further issue is the source of the structures; are
structures generated from MD simulations or solved using NMR
or X-ray crystallography more suitable? Previously, NMR
structures have been shown to sample more conformational
space than MD simulations and account for additional protein
flexibility. 22 However, multiple groups have demonstrated that
dynamics simulations provide complete sampling of the multiple
flap conformations of HIV-1p.23,24

Crystal structures are thought to provide a more accurate
depiction of a protein despite the fact that NMR structures are
solved in a more biologically relevant environment.25-27 This
may be due to the fact that X-ray crystallography generally
provides a greater amount of high-quality experimental data than
NMR spectroscopy, which can be assessed using standard
quality control measurements. Good agreement is usually seen
in the protein backbones of crystal structures versus NMR
structures, and the conformational sampling is focused on loop
regions and side chains.25,28 Two independent groups
found that crystal and NMR structures often provide comple-
mentary structural information and should be used be used in
conjunction with one another as methods to solve protein
structures.29,30 It is also known that the choice of protein
structure can heavily influence the outcome of a simulation;
different conformations do perform better than others in virtual-
screening applications.31,32A recent review summarizes the use
of crystal structures in SBDD and discusses the associated
limitations.33

Crystal structures provide only a static snapshot of the
dynamic structure of a protein, and bound structures can lead
to the “cross-docking” problem. The binding site is already
predefined for the cocrystallized ligand and may not fit other
conformationally diverse structures. Nonetheless, using a col-
lection of crystal structures bound to a variety of ligand classes
offers an ensemble of conformations and can elucidate structural
changes that occur upon ligand binding.34 Limitations exist such
that most systems rarely have a large number of crystal
structures solved in complex with many diverse ligands. Also,
crystal structure conformations can be influenced by crystal-
lization conditions such as crystal packing effects, pH, buffers,
and temperature and may not be a fully correct representation
of the structure in solution. Finally, flexible regions may be
ill-defined due to a lack of electron density.

Conversely, the use of NMR spectroscopy as a method of
three-dimensional structure determination provides an ensemble
of conformations found in solution. The ensemble is comprised
of low-energy structures that satisfy acceptance criteria based
on the experimental data. Each conformation alone can be
thought of as a static snapshot; however, they provide a dynamic
representation of the protein when used as a collection. As with
crystallography, experimental conditions may influence the
determined conformations. Also, the structural variability may
not be a result of true motion in the protein but rather due to
insufficient experimental data.35

In the literature, almost all studies use crystal structures in
SBDD, both collections and single, static conformations. There
are a few occurrences where NMR ensembles are also employed.
For example, Knegtel et al. used NMR ensembles to examine
ras p21 and uteroglobin.12 Additionally, Huang and Zou found
that ensemble docking to NMR structures of HIV-1p resulted
in the identification of more known inhibitors than docking to
single, static crystal structures (91% vs 66%, respectively).36

Furthermore, it is common to utilize information from NMR
such as NOE-derived distance constraints and torsion angle
constraints to aid in both protein-protein and ligand-protein
docking.37-39 Fragment-based screening through NMR or “SAR
by NMR” has also been widely used in drug discovery for the
past 10 years.40-42 However, no one has compared the use of
NMR structures to collections of crystal structures.

We are now interested in expanding our MPS technique to
incorporate experimental structures from either an NMR en-
semble or a collection of crystal structures. There are few
examples where a diverse set of experimentally determined
structures is available, but one such case is HIV-1p; structures
are available from both NMR and X-ray crystallography. HIV-
1p is a key drug target because it is a viral enzyme critical to
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continuing the life cycle of HIV, the retrovirus responsible for
acquired immunodeficiency syndrome.43 Upon ligand binding,
multiple conformational changes occur in the protease such that
there is an inward rotation of each monomer and the flaps that
cover the active site assume a closed conformation (5-7 Å shift
from apo form).44,45Although there are nine marketed therapies
that target HIV-1p,46 this is still a very active area of research
due to the associated toxicity, poor pharmacokinetic properties,
and resistance that has developed to the existing drugs.

We focus on comparing the use of two protein collections in
our MPS method, an NMR ensemble of HIV-1p with a bound
cyclic urea (cu) inhibitor and multiple unique crystal structures
with cu inhibitors. The location and chemical characteristics of
the pharmacophore elements are consistent between the models;
however, additional elements exist in the cu-crystal model.
Interestingly, even when the protease is in a bound conformation,
the features of our previous model generated from apo HIV-
1p21 are still reproduced. In an effort to incorporate the most
structural data, we also create a model from 90 crystal structures
of susceptible HIV-1p. We show that the structural variation
between the collection is very small, resulting in a very similar
model to the cu-crystal model. We are also able to demonstrate
that models generated from protein ensembles are more suc-
cessful at discriminating between known HIV-1p inhibitors and
inactive druglike molecules than are models from a single
“average” structure. Erickson et al. have shown that “average”
structures of HIV-1p also perform poorly when docking a ligand
into its binding site with a successful docking rate of only
32.5%.13 To our knowledge, this is the first time a direct
comparison of NMR ensembles and crystal collections was made
using the same protein in SBDD.

Methods

Protein Preparation. A cu-bound NMR structure (PDB ID:
1BVE)47 comprised of 28 distinct models was downloaded from the
Protein Data Bank (PDB)48 along with the restrained minimized average
NMR structure (PDB ID: 1BVG).47 The Binding MOAD database49

was used to obtain 174 bound crystal structures, all having a resolution
of e2.5 Å. Any structure with a mutation known to confer resistance
or known to alter the biological activity of the protein (i.e., A25N)
was discarded, resulting in a collection of only drug-susceptible, active
strains. Because of the ambiguity in the data, any structure with residues
in multiple orientations in the active-site region (defined as any residue
within 10 Å of the active-site center) was removed. Structure 1AID
was also discarded from this study as an outlier due to the unusual
conformation of the flap region,50 resulting in a final set of 90 structures.
Of the 90 structures, 10 are drug-susceptible, active strains bound to
unique cu ligands and were used as a collection to provide a direct
comparison to the NMR ensemble: 1AJX,51 1DMP,52 1HVR,53

1HWR,44 1PRO,54 1QBR,55 1QBS,56 1QBT,55 1QBU,55 and 1T7K.57

The structures of the cu ligands and inhibition constants are provided
in the Supporting Information along with the PDB IDs of the entire
crystal collection.

All NMR and crystal structures were first prepared by using
MolProbity58 to check the side-chain orientations, and histidine tau-
tomers were checked by hand. Next, ligands and solvent ions were
removed from each structure. Any hydrogen atom was stripped from
the crystal structures then added with xleap in the AMBER659 suite
and minimized to convergence with 10 000 steps of conjugate gradient
energy minimization using Sander Classic. This ensured uniform setup
of all structures, whether from NMR or crystallographic sources.

MUSIC Simulation. The active site of each NMR and crystal
structure was flooded with 500 small molecule probes using a 12 Å
radius sphere to define the initial placement. Benzene, ethane, and
methanol were utilized as the probes. The sphere was centered at the
midpoint of the active site to ensure complete random sampling
throughout the entire binding cavity. Each structure was then used in
a multiunit search for interacting conformers (MUSIC) simulation
with the BOSS program,60 using the OPLS force field61 and
holding the protein atoms fixed. The small molecule probes were
minimized via a low-temperature Monte Carlo sampling, revealing
energetically favorable regions of the active-site surface for each
chemical functionality. Benzene probes elucidate aromatic and hydro-
phobic interactions, ethane probes clarify general hydrophobic interac-
tions from aromatic, and methanol probes demonstrate hydrogen-bond
donating and accepting sites. Probes do not interact with other probes,
but the full interaction energy is calculated with the protein atoms.
Further details describing the MUSIC simulation have been previously
published.16

Pharmacophore Elements.Each structure was then examined to
determine clusters, regions where multiple probes had minimized to
the same location on the protein surface. This was done both manually
and using an autoclustering method based on our in-house Jarvis-
Patrick codes. Any cluster within 9.5 Å of the catalytic aspartic acid
residues 25 and 25′ was investigated, and if eight probes were present,
the cluster was represented by its “parent”, the lowest-energy probe
calculated in the MUSIC simulation.

An average structure was calculated for each protein set: the NMR
ensemble, all-crystal collection (90 structures), and cu-crystal collection
(10 structures). Each set of structures was superimposed to a reference
protein, the structure in the ensemble with the smallest rmsd to the
calculated average structure, using a Gaussian-weighted rmsd (wrmsd)
alignment,62 setting the scaling factor equal to 2 Å2. The overlaid sets
were then used to determine “cluster of clusters” or consensus clusters
of the probe molecules. A consensus cluster is defined by having parent
probes fromg50% of the protein conformations. For example, the NMR
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ensemble contains 28 structures; hence, there must be 14 parents in
close proximity to be a consensus cluster. Only probes found in
energetically favorable regions, conserved throughout the ensemble,
will remain as a consensus cluster. Thus, protein flexibility is implicitly
accounted for by focusing chemical requirements on the rigid, unforgiv-
ing regions of the binding site and allowing chemical and steric
flexibility in the mobile regions.

The consensus clusters were then represented as spherical pharma-
cophore elements. The center of each pharmacophore element was
defined by the average position of the benzene centroid, the midpoint
of the carbon-carbon bond for ethane, and the oxygen atom of the
methanol probe. The radius was based on the rmsd of the probe
positions. Overlapping benzene and ethane clusters were combined and
termed aromatic/hydrophobic elements. Individual benzene elements
were labeled aromatic, but extraneous ethane clusters were discarded.
Methanol elements were classified as a hydrogen-bond donor, acceptor,
or doneptor (donor and acceptor). Two excluded volumes were defined
by the average position of the Cγ of each catalytic aspartic acid residue
and used to represent the bottom of the active site. The radii of the
excluded volumes were set to 1.5 Å, the approximate length of a Cγ-
Oδ bond. A more detailed description of the MPS method can be found
elsewhere.20

Pharmacophore Model Evaluation.The resulting pharmacophore
models were screened against databases of compounds with pregen-
erated multiple conformers (maximum number of conformations was
300) using the search option within the Pharmacophore query editor
of Molecular Operating Environment (MOE).63 This is simply a fit/
no-fit comparison based on the geometry of each conformer’s chemical
features and the physical arrangement of the pharmacophore elements.
It is not a docking calculation based on scoring functions.

Three previously created databases of compounds were used. The
first database consists of 89 diverse known HIV-1p inhibitors taken
from the PDB and the literature. Two databases of noninhibitors from
the Comprehensive Medicinal Chemistry Index64,65were used as decoys.
The first noninhibitor database is comprised of 85 ligands20 identified
by filtering based on size and chemistry comparable to that of known
protease inhibitors, whereas the second is more general and contains
2322 druglike ligands of very diverse sizes and chemical characteris-
tics.66 The full set created for use in our previous work contained 2324
compounds, but for this work it was appropriate to remove the two
known HIV-1p inhibitors. The preparation and composition of these
data sets has been described previously.20,66 The stringency of the
pharmacophore model was examined by varying the required number
of pharmacophore elements that must be matched by enabling the partial
match option in the Pharmacophore query editor of MOE and also by
varying the radii of the elements.

The performance of the models was evaluated by comparing the
percentage of identified known inhibitors (true positives) versus the
percentage of druglike noninhibitors identified (false positives). The
database screening results are presented as receiver operator charac-
teristic (ROC) curves, where the optimal model would lie at the (0,
100) point predicting 100% of true positives and 0% of false positives.
The models were also qualitatively compared back to the cu ligands.

Results and Discussion

Structural Comparison of the Protein Conformations. A
sequence comparison was made of the 10 cu-crystal structure
sequences and that of the NMR ensemble. The sequences differ
at three amino acid positions: 3, 37, and 95. However, none of

the mutations confer resistance or alter the biological activity
of HIV-1p. The 28 NMR models and 10 cu-crystal structures
were compared by aligning their CR coordinates to their
respective average structure using a Gaussian-weighted align-
ment.62 The superposition of the 28 NMR models is shown in
Figure 1A along with the bound cu ligands, and the 10 crystal
structures and their unique cu ligands are given in Figure 1B.
The majority of the variation between the NMR backbones is
in the “elbows” of the flaps and in the “cheek” region,
highlighted by arrows in Figure 1A, whereas the active site
appears quite rigid. A detailed analysis of the NMR ensemble
is provided by Yamazaki et al.47 The backbones of the cu-crystal
structures show much less deviation.

The rmsd was calculated between each wrmsd-aligned
structure and its reference structure. For the NMR ensemble,
the CR rmsd ranges from 0.65 to 1.71 Å with the average being
0.92 Å. The cu-crystal collection had much lower rmsd values
and also a smaller range, 0.26-0.80 Å and an average of 0.43
Å. (The rmsd values calculated from a wrmsd alignment are
higher than those calculated from a standard rmsd alignment.62

This is because a wrmsd alignment sacrifices the fit in the
flexible regions to better align the rigid core.) The point here is
not to compare the literal rmsd values per se but rather to
evaluate the range of the values to illustrate the conformation
variation between the NMR ensemble and cu-crystal collection.
This analysis demonstrates that there is a greater variation
between the CR coordinates of the NMR ensemble than the cu-
crystal collection. Other groups have also found that the variation
between the active sites of different crystal structures is usually
small, 0.3-0.8 Å rmsd.50,67

Across all NMR and crystal conformations, the cu ligands
are in relatively the same conformation and position in the active
site of the protease, the urea oxygen accepting a hydrogen bond
from the protease flaps and the diols off the seven-membered
ring donating hydrogen bonds to the 25/25′ aspartic acids. The
position of the urea oxygen shows more spread across the 28
NMR structures than within the crystal structures. The side
chains of the cu inhibitors occupy their complementary S1/S1′
and S2/S2′ substrate recognition sites. The cu ligands bound in
crystal structures 1QBR,55 1QBT,55 and 1QBU55 have larger
side chains and also hydrogen bond with the flap residue Gly
48/48′.

Pharmacophore Model Comparison.The NMR pharma-
cophore model maintains theC2 symmetry of the protease and
has eight sites: two hydrogen-bond donor elements near the
catalytic aspartic acid residues 25/25′, two aromatic/hydrophobic
elements that anchor the hydrophobic regions near the active-
site center, and four aromatic/hydrophobic elements that occupy
the S1/S1′ and S2/S2′ pockets of the active site. The chemical
characteristics of the NMR pharmacophore elements differ
slightly from the chemical features of the bound cu ligand. The
hydrogen-bond donor elements are slightly displaced from the
location of the hydroxyl groups that extend below the seven-
membered ring. The two interior aromatic/hydrophobic elements
are located between the cu ligand side chains and represent the
hydrophobic features of the central scaffold, whereas the four
exterior aromatic/hydrophobic elements complement the chemi-
cal features of the ligand side chains. Figure 2A presents the
MPS model based on the NMR structures in relation to the HIV-

(63) Molecular Operating EnVironment; Chemical Computing Group Inc.:
Montreal, Canada, 2001.

(64) ComprehensiVe Medicinal Chemistry; Hansch, C., Sammes, P. G., Taylor,
J. B., Eds.; Pergamon Press: Oxford, 1990; Vols. 1-6.

(65) ComprehensiVe Medicinal Chemistry Database; MDL Information Systems,
Inc.: San Leandro, CA, 2003.

(66) Bowman, A. L.; Lerner, M. G.; Carlson, H. A.J. Am. Chem. Soc.2007,
129, 3634-3640. (67) Erickson, J. W.Perspect. Drug DiscoVery Des.1993, 1, 109-128.
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1p structure, and Figure 2B shows the model superimposed with
the 28 cu ligands.

In order to assess how the models are improved through the
use of MPS, we also generated a “static” model from a single
structure. The pharmacophore element centers were defined in
the same manner as previously described; however, the static
model is based on the probes docked into one structure, rather
than the parent probes across MPS. The pharmacophore model
generated from the average NMR structure maintained the
features of the model created from the NMR ensemble, but the
radii are much smaller for most elements. This is most likely
because without the consensus clustering step, the positions of
the probes come from one structure only, even if it is an
average. The spread between the probes docked within one
structure is usually much smaller than the spread between the
parent probes across many conformations. There are also two
additional donor sites occupying the S3/S3′ subsites. Details of
this static model are presented in the Supporting Information.
Though the model is inferior to MPS models, it does show

improvement over our earlier static model based on an apo
crystal structure.20

The cu-crystal pharmacophore model also maintains theC2
symmetry of the protease and is shown in Figure 3A. However,
it contains 11 elements: a hydrogen-bond acceptor element near
the tips of the protease flaps, two hydrogen-bond donor elements
near the catalytic aspartic acid residues 25/25′, two aromatic/
hydrophobic elements near the core of the cu ligands, four
aromatic/hydrophobic elements that occupy the S1/S1′ and S2/
S2′ pockets of the active site, and two aromatic sites in the S3/
S3′ pockets. The crystal model overlaid with the 10 unique cu
ligands is given in Figure 3B.

The most interesting feature of this model is the hydrogen-
bond acceptor element that perfectly overlays with urea oxygen
of the 10 cu ligands. The urea oxygen is known to displace a
structural water molecule that coordinates substrates/inhibitors
to the tips of the protease flaps. The structural water is a key
difference between mammalian and HIV proteases, and this
displacement may be one reason why cu ligands are very

Figure 1. (A) Gaussian-weighted overlay of 28 models in the NMR ensemble along with all cu ligands (front view). The corresponding cu ligands are also
shown using a top view for clarity. The regions of the protein with high backbone deviations are highlighted with an arrow. (B) Gaussian-weighted overlay
of 10 crystal structures bound to unique cu ligands (front view). A top view of the 10 ligands is also shown. (C) The scale shows how smaller deviations
(blue) are more heavily weighted in the wrmsd fit,c ) 2 Å2. Deviations over 2.45 Å have weights under 5% (red).
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selective for HIV proteases.55,68 Similar to the NMR models,
the hydrogen-bond donor elements at the bottom of the pocket
are slightly higher than the ligand diols. The four aromatic/
hydrophobic elements complement the chemical features of
some cu ligands but do not agree with others. The additional
two aromatic sites at the S3/S3′ subsites fall at the edge of the
aromatic rings in the cu ligands.

The most significant difference between the NMR and cu-
crystal models is the hydrogen-bond acceptor element in the
crystal model. This site was not occupied by probes in any of
the 28 NMR structures or the average structure. Yamazaki et
al. state that the flap tips (residues 48-51) are dynamic in
solution and exhibit motion on a nanosecond time scale, whereas
in crystal structures the flap tips are well-ordered.47 The
conformational variation across an NMR ensemble can be due
to two things: proteins dynamics or an under-resolved structure
from lack of experimental data. The HIV-1p NMR structure
solved by Yamazaki et al. is regarded as a high-quality
ensemble, and hence, the variation is thought to be from the
dynamics of the structure.

There are also two additional aromatic sites in the cu-crystal
model that are not found in the NMR model. These sites are
located in the S3/S3′ subsites located at the solvent interface
and are known to have broad substrate specificity.68 The NMR
and cu-crystal models are compared to the substrate recognition
motifs of the HIV-1p active site in Figure 4, parts A and B,
respectively. In the NMR structures, the arginine 8/8′ side chains
are pushed out from the active site in variable locations. For

this reason, there was more spread in the probes across the
multiple conformations. The high flexibility of the arginine 8/8′
side chains that is seen in the NMR structures was also observed
in the conformations sampled by MD simulations used to create
previous pharmacophore models.20,21In both the NMR and cu-
crystal structures, additional hydrogen-bond doneptor probes
were observed between residues arginine 8/8′ and aspartic acid
29/29′ in the S3/S3′ pockets. However, these doneptor sites fall
outside the 9.5 Å cutoff; consequently, they were not included
in the pharmacophore models. A few of the larger inhibitors
seen in the collection of 90 crystal structures have features that
hydrogen bond to arginine 8/8′ or aspartic acid 29/29′. Nonethe-
less, there are many smaller ligands that maintain an extremely
high potency (nanomolar to picomolar) without complementing
this region, so it is appropriate that these sites were not included
as an essential feature. Accordingly, ligands with the hydrogen-
bonding feature will be accepted by the model, but it will not
be required for identification as a potential inhibitor of
HIV-1p.

Eight elements of the cu-crystal model were common to the
NMR model: two hydrogen-bond donor elements and six
aromatic/hydrophobic sites. The position and radii of these eight
elements are very similar with the exception that the radii of
the hydrogen-bond donor elements are slightly smaller for the
cu-crystal model. The location and chemical character of the
8-site NMR model is highly consistent with pharmacophore
models generated from MD simulations of apo HIV-1p (apo-
MD model). A representative apo-MD model based on data from
our previous work21 is provided in Figure 5A. However, in the
apo-MD model, several pharmacophore elements were aromatic,(68) Wlodawer, A.; Erickson, J. W.Annu. ReV. Biochem.1993, 62, 543-585.

Figure 2. (A) Pharmacophore model (radii of 1× rmsd) generated using 28 NMR structures. Elements are color-coded according to chemical functionality:
red, hydrogen-bond donor; cyan, aromatic/hydrophobic. Top view of the protease backbone is shown in gray, as are the excluded volumes. (B) Pharmacophore
model superimposed with 28 cu ligands colored in gray. Both top and front views are shown.
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but all of the similar elements in the NMR model are aromatic/
hydrophobic. The elements of the apo-MD model are also spread
further apart due to the larger active-site cavity in the semiopen
conformation than bound form. The cu-crystal model clearly
differs from the apo model by the additional hydrogen-bond
acceptor and two aromatic sites.

Additionally, we observed that the range of CR rmsd for the
apo-MD ensemble (11 structures) is similar to that of the NMR
(28 structures): 0.94-1.50 versus 0.65-1.71 Å, respectively.
The Gaussian-weighted superposition of the 11 structures from
the apo-MD ensemble is shown in Figure 5B. The overlay of
the MD ensemble clearly displays more movement in the bottom
of the active site and, as one would expect due to the apo
conformation, in the flap region than the NMR ensemble. It is
interesting to find better agreement between bound HIV-1p
conformations from NMR and the apo HIV-1p conformations
from MD, rather than agreement to other bound conformations
from X-ray crystallography.

Evaluation of Pharmacophore Models.The NMR and cu-
crystal models were screened against a database of known HIV-
1p inhibitors and two decoy data sets using the search option
within the Pharmacophore query editor in MOE, while varying
the stringency of the search (i.e., enabling a partial match in
the pharmacophore search). Each ligand is described as a set

of “annotation points” based on its chemistry and position in
space. The ligand annotation points are then mapped to the
pharmacophore elements and identified as a “hit” only if each
of the required elements is satisfied. Hence, this is a binary fit
or no-fit method, where all identified ligands are considered
compatible with the pharmacophore model. The resulting data
is presented as ROC curves. The best models identify the
greatest number of true positives and the least number of false
positives; consequently the optimal pharmacophore model is
defined by having the smallest distance from (0, 100). The raw
data used to generate the ROC curves of the NMR and cu-
crystal pharmacophore screens is available as Supporting
Information.

The performance of the pharmacophore models at discrimi-
nating known inhibitors versus a database of noninhibitors with
similar size and chemistry is shown in Figure 6, parts A and B.
The MPS models from NMR and cu crystals were both very
successful at differentiating between the two populations. The
optimal NMR model (7/8 sites, 2× rmsd) identifies 89.9% of
the true positives and only 10.6% of the false positives; the
point on the ROC curve is highlighted in Figure 6A. The optimal
cu-crystal model (9/11 sites, 3× rmsd) also identifies the same
number of true positives, 89.9%, but hits less false positive than
the NMR model, 7.1% (point highlighted in Figure 6B).

Figure 3. (A) Pharmacophore model (radii of 1× rmsd) generated using 10 cu-crystal structures. Elements are color-coded according to chemical
functionality: red, hydrogen-bond donor; blue, hydrogen-bond acceptor; cyan, aromatic/hydrophobic; green, aromatic. Top view of the protease backbone
is shown in gray and so are the excluded volumes. (B) Pharmacophore model superimposed with 10 unique cu ligands colored in gray. Both top and front
views are shown.
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However, these results may be misleading. The 11-site cu-
crystal model shows the best performance when 9 of the 11
sites are required. This demonstrates that the 11 sites are too
specific; less essential features of the active site were selected
out from using multiple cu-crystal structures, unlike with the
NMR ensemble. If the three “extra” sites unique to the cu-crystal
model are dropped, the performance is nearly identical to the
optimal 11-site model. The best, “core 8-site” cu-crystal model
(8/8 sites, 3× rmsd) identifies 88.8% of the true positives and
only 10.6% of the false positives. The extra sites do not
significantly improve the performance of the model, which
indicates that the hits from the cu-crystal model are really using
the elements in common with the NMR model and apo-MD
model. Extraneous sites which do not improve the performance
of the models are problematic for database screening and
undesirable for the MPS technique.

The optimal NMR performance is comparable to the optimal
11-site cu-crystal model but with fewer sites. Additionally, the
8/8 site, 3× rmsd, NMR model performed quite similarly to
the optimal NMR model (7/8 sites, 2× rmsd); the number of
true positives identified remained the same, while only identify-
ing two additional false compounds. Therefore, all of the sites
in the NMR model appear to encode useful information. The
11/11 cu-crystal models demonstrate mediocre performance; the
best model (4× rmsd) has a larger false positive hit rate and
identifies only 65.2% of the true positives. The reduced amount
of conformational sampling of the protein had to be overcome
by significantly increasing the scaling factor for radii.

We use multiple structures to determine the most essential
features that are conserved across different receptor conforma-

tions. Overall, the NMR model is more general, and the features
do not simply reproduce the chemical characteristics of the
bound cu ligand. In a recent study by our group using a different
protein target, dihydrofolate reductase (DHFR), crystal structures
were also employed as MPS and very minor conformational
changes were observed between the collections.66 The minimal
conformational variation between the structures resulted in
relatively small radii of the elements. Hence, the radii of the
pharmacophore models had to be multiplied by 4 or 5× rmsd
for optimal performance.

We anticipated that the use of a more general model will be
beneficial when searching large databases for novel compounds
from new chemical space. We compared the performance of
the pharmacophore models at discriminating known HIV-1p
inhibitors from a large, general data set of 2322 decoy
compounds. Again, both the NMR and crystal models display
excellent performance at selecting out the known inhibitors,
Figure 6, parts C and D, respectively. The NMR model again
performs very well when 7/8 or 8/8 sites are required. Both
7/8, 2× rmsd and 8/8, 3× rmsd identified 89.9% of the true
positives and only 2.8% and 4.1% of the false positives,
respectively; the points on the ROC curve are highlighted in
Figure 6C. Once more, the optimal cu-crystal model required
9/11 sites (2.7× rmsd) to perform similarly to the optimal NMR

Figure 4. Comparison of known HIV-1p substrate recognition pockets with
MPS pharmacophore models (radii of 1× rmsd): white, S1/S1′ pocket;
yellow, S2/S2′ pocket; purple, S3/S3′ pocket. Elements are color-coded
according to chemical functionality: red, hydrogen-bond donor; blue,
hydrogen-bond acceptor; cyan, aromatic/hydrophobic; green, aromatic. Flap
residues 46/46′-54/54′ are removed for clarity. (A) NMR model. (B) cu-
crystal structure model.

Figure 5. (A) Top view of an MPS pharmacophore model (radii of 1×
rmsd) created using 11 structures generated from a 3 ns MDsimulation of
apo HIV-1p (ref 21). Elements are color-coded according to chemical
functionality: red, hydrogen-bond donor; cyan, aromatic/hydrophobic; green,
aromatic. Excluded volumes are shown in gray. (B) Gaussian-weighted
overlay of the 11 snapshots (front view). The color code of the weights is
the same as in Figure 1C, and the view is comparable to Figure 1, parts A
and B.
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model, identifying 88.8% of the true positives and 3% of the
false positives (point highlighted in Figure 6D). However, only
the NMR model was able to identify almost 100% of the true
positives. The presence of extraneous sites may explain why
the cu-crystal models miss identifying several of the known
inhibitors even with the most generous criteria.

Several aspects of the model’s performance confirm patterns
we observed with the apo-MD models in our previous stud-
ies.20,21 First, all sets of ROC curves are very steep at the
beginning indicating the potential for models with smaller radii
to be used in virtual-screening applications. When screening
large databases of compounds, the number of true positives can
be sacrificed to reduce the amount of false positives. Second,
larger radii are needed when more elements are required. Third,
among the false positives identified by the pharmacophore
models are renin inhibitors, transition-state mimics of peptide

cleavage, and small hydrophobic signaling peptides. This is not
surprising since renin is a homologous aspartic protease, the
function of HIV-1p is to cleave peptides, and the substrates are
hydrophobic regions of proteins. Similar classes were identified
from both decoy databases, but as one would expect due to the
size of the general database (2322), additional classes were also
seen. This list includes macrocyclics (another HIV-1p inhibitor
class), â-lactams, tetracenes, and other polycyclic systems.
However, for brevity we are providing only the structures of
the identified false positives from the database of 85 chemically
similar compounds in the Supporting Information.

Effect of the Structure Number in Ensemble. Only 10
structures were used to generate the cu-crystal model, but the
NMR ensemble contains 28 conformations. We were concerned
that the larger number of structures in the NMR ensemble may
bias the model for better performance. To ensure a fair

Figure 6. Receiver operator characteristic (ROC) curves generated from screening a database of 89 known HIV-1p inhibitors against a set of 85 chemically
similar known inactives and 2322 general decoy compounds. Each series represents a different stringency in the screen (i.e., 6 of 8 elements are required
as a hit, 7 of 8 elements are required as a hit, etc.) Points in the series are increasing radii values from 1 to 3× rmsd for the NMR model and 1-4 × rmsd
for the cu-crystal model. The radii are labeled on the 6 of 8 models based on NMR and the 9 of 11 models based on cu crystals. The optimal pharmacophore
models are highlighted by an arrow. (A) MPS NMR pharmacophore models, 89 known inhibitors vs 85 decoy compounds (optimal: 7/8, 2.0× rmsd). (B)
MPS cu-crystal pharmacophore models, 89 known inhibitors vs 85 decoy compounds (optimal: 9/11, 3.0× rmsd). (C) MPS NMR pharmacophore models,
89 known inhibitors vs 2322 general molecules (optimal: 7/8, 2.0× rmsd). (D) MPS cu-crystal pharmacophore models, 89 known inhibitors vs 2322
general molecules (optimal: 9/11, 2.7× rmsd).
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comparison between the NMR and crystal structures, we also
generated an additional MPS pharmacophore model from 90
crystal structures (all-crystal model). The 90 structures are bound
to a variety of ligand classes. Once again, there is little backbone
variation between the 90 structures; the CR rmsd values range
from 0.12 to 0.71 Å. An overlay of the structures using the CR
coordinates is provided in Supporting Information. Zoete et al.
also found minimal variation between 73 HIV-1p backbones
bound to different ligands.69 Moreover, we observed that adding
35 structures with resistant mutations did not provide any
additional conformational variation (125 structures total, data
not shown).

We also calculated the rmsd for each heavy atom of the
protein active site (defined as any atom within 10 Å of the
active-site center) using 1PRO as the reference structure. This
was chosen because 1PRO is the representative structure for
the HIV-1p family in the Binding MOAD database49 as it has
the tightest-bound inhibitor. Moreover, it is also bound to a cu
ligand, making it an appropriate choice for comparing the cu-
crystal structures to the larger set of 90 structures. The rmsd
values ranged from 0.16 to 1.80 Å, with an average of 0.51(
0.37 Å.

The small conformational variation between the crystal
structures does not appear to be an effect of crystal structure
refinement. It is common practice to use a previously solved
crystal structure when determining the coordinates of another.
However, our inspection of the electron density maps showed
the structures to be of high quality with well-resolved density
defining the coordinates. Crystal packing effects are known to
be important for conformations of HIV-1p, but there is no
evidence to suggest that is the cause of the limited sampling.
Most likely, the resulting conformations are influenced by a
variety of factors including the conditions used in X-ray
crystallography such as temperature and pH. For example, low
temperatures are typical for growing crystals and may not
provide enough thermal energy for a protein to overcome the
barrier to sample conformations outside of a particular local
minimum. In the case of HIV-1p, apo crystal structures are found
in the semiopen conformation, whereas bound structures exist
in the closed state. A 1.3 Å apo crystal structure of a highly
mutated HIV-1p strain was recently solved in a novel open
conformation (PDB ID: 1TW7),70 but the open state was later
shown to be caused by crystal packing effects.71

Cross-docking studies in the literature demonstrate how
different HIV-1p structures perform poorly when trying to dock
ligands from other crystal structures.72,73 However, there are
also cross-docking examples where HIV-1p performs quite
well.74 Furthermore, there are examples in the literature where
HIV-1p is able to reproduce docking poses of its own ligands
successfully72 and also unsuccessfully.73 We propose that the
difficulties in those studies arise from the ligands of HIV-1p,
not the structures of the proteins. The majority of the bound

ligands are large, flexible peptides. It is well-known that many
of the docking programs have difficulty with ligands that have
many rotatable bonds. The different studies in the literature used
different routines for sampling ligands, and this could be the
real source of poor cross-docking results. This argument supports
our structural analysis of HIV-1p; there is very little variation
between the crystal structures.

The resulting all-crystal pharmacophore model is very similar
to the cu-crystal model. The only exception is two elements
that are aromatic in the all-crystal model, rather than aromatic/
hydrophobic; the model is provided in the Supporting Informa-
tion. The inclusion of more structures appears to cause the two
elements to become less general. The sphere centers and radii
are nearly identical between the cu-crystal and all-crystal
models, apart from the aromatic sites flanking the solvent-
exposed region of the binding site. In the all-crystal model, they
better replicate theC2 symmetry of the protein. The model
performance does change slightly; the optimal model now
requires even more elements to be dropped: 8 out of 11
elements (8/11 sites, 2.7× rmsd). Furthermore, it identifies less
of the true positives (86.5% compared to 89.9%) and more of
the false positives (14.1% compared to 7.1%). The raw data
from the pharmacophore screen is available in the Supporting
Information. Again, as in the case of the average NMR model,
the loss of the hydrophobic character of the aromatic elements
in the S1/S1′ pocket does seem to negatively affect the
performance of the model; it appears that an aromatic/
hydrophobic element truly provides a more accurate representa-
tion of the active-site pockets.

As previously mentioned, the range of CR rmsd values for
the apo-MD ensemble (11 structures) is comparable to that of
the NMR (28 structures), 0.94-1.50 versus 0.65-1.71 Å,
respectively, and that the MPS models are nearly identical.
However, the range of CR rmsd values for both the cu-crystal
(10 structures) and all-crystal (90 structures) collections is much
smaller, 0.26-0.80 and 0.12-0.71 Å, respectively. Both models
based on crystal structures have three additional sites. We strive
to generate pharmacophore models from an ensemble that
represents an appropriate sampling of conformational space. It
appears that both NMR and MD ensembles can account for more
accessible conformations than bound protein-ligand crystals
structures, even those bound to a set of diverse ligands. We
stress that crystal structures are very useful in many other SBDD
applications, but we believe that bound HIV-1p crystal structures
do not provide a complete sampling of receptor conformations
and NMR models can have definite advantages when trying to
represent the protein’s flexibility.

Conclusion

Incorporating protein flexibility into SBDD is necessary to
simulate a more accurate representation of a protein in solution.
By looking for favorable interaction regions across multiple
conformations of a protein, we can determine the most essential
and conserved features of the active site. We are able to show
that the MPS method can be extended to include the use of
experimental structures as a source of multiple conformations.
The use of experimentally determined structures is attractive
over generating conformations from an MD simulation in order
to reduce the amount of time required to develop an MPS model.
Additionally, to our knowledge this is the first direct comparison

(69) Zoete, V.; Michielin, O.; Karplus, M.J. Mol. Biol. 2002, 315, 21-52.
(70) Martin, P.; Vickrey, J. F.; Proteasa, G.; Jimenez, Y. L.; Wawrzak, Z.;
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13360-13361.
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of NMR ensembles and crystal collections for incorporating
receptor flexibility in SBDD.

The MPS pharmacophore models generated from an NMR
ensemble and collections of crystal structures were able to
discriminate known HIV-1p inhibitors from druglike decoys and
showed better performance than a model previously created
using apo HIV-1p structures. They also showed superior
performance over a model created from the average NMR
structure. The average NMR model contained additional ele-
ments and lost important chemical characteristics that appeared
to diminish the performance of the model, but the use of MPS
identified the most important, chemically relevant features. The
use of an average structure from multiple receptor conformations
is an alternate method that has been proposed for incorporating
protein flexibility in SBDD, but we find that ensembles of
structures is a superior approach.

The present results are strong support for the use of NMR
ensembles in SBDD.The NMR model reVealed only the most
essential features of the binding site.Instead, the collection of
crystal structures identified three additional, and less essential,
elements. These were highly related to chemical features specific
to the class of cu ligands. In order to achieve a reasonable
performance, additional elements had to be dropped or the radii
had to be multiplied by large scaling factors. The NMR model
did not simply reproduce its bound ligand. It could be used in
its entirety (8/8 sites, 3× rmsd) with exceptional performance
for discriminating true inhibitors from decoy molecules. The
performance improved slightly with 7/8 sites, 2× rmsd models,
which is in good agreement with the parameters previously
suggested for MPS based on MD (generally,n - 1 of n features
and radii of ∼2 × rmsd). Furthermore, the NMR ensemble
samples a greater amount of conformational space than the
crystal collection and is comparable to the amount of sampling
seen in a 3 ns MDsimulation of apo HIV-1p.21

Overall, we recommend NMR structures over crystal struc-
tures for incorporating protein flexibility into SBDD studies of
HIV-1p. By no means are the crystal structures inaccurate;
instead, there is simply too little variation between the different
structures, even when bound to a variety of ligand classes. In
fact, this analysis strongly suggests that the difficulties seen in

cross-docking studies of HIV-1p do not arise from the protein
structures themselves. Most likely, the difficulty comes from
the ligands which inhibit HIV-1p. Many routines employed to
generate ligand conformations have difficultly with large,
flexible compounds, and this could be the cause of the
inconsistencies in the cross-docking results.72-74
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